Search results

Create Derived Columns and Transforming Data Using Bold Data Hub

In this article, we will demonstrate how to import tables from a CSV file, to create derived columns using transformations, and move the cleaned data into the destination database using Bold Data Hub. Follow the step-by-step process below.

Sample Data Source:

Tickets


Creating Pipeline

Learn about Pipeline Creation

Applying Transformation

Learn more about transformation here

Creating Derived Columns

Overview

Derived columns are new columns created based on existing data. They allow us to gain more granular insights by combining or transforming existing variables. For example, we can combine customer status (new vs. returning) with ticket priority to understand how these two factors influence support ticket trends.

Approach

We can create a new column that combines customer status (e.g., determined by the first ticket date) with ticket priority. This combination can help us analyze the support needs of new versus returning customers and how ticket priority impacts their service experience.

SQL Query for Creating Derived Columns

SELECT *, 
       CASE 
           WHEN CAST(SUBSTR(Customer_ID, 5) AS INTEGER) % 2 = 0 THEN 'Returning' 
           ELSE 'New' 
       END AS Customer_Status,
       CASE 
           WHEN CAST(SUBSTR(Customer_ID, 5) AS INTEGER) % 2 = 0 
           THEN 'Returning - ' || Priority 
           ELSE 'New - ' || Priority 
       END AS Customer_Status_Priority
FROM {pipeline_name}.tickets;